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Abstract 

The Borrmann-Lehmann interference phenomena in 
the moderate-absorption case (~zt = 1.6) have been 
observed. The effect of absorption on the behaviour 
of X-ray wave fields in a crystal for Borrmann- 
Lehmann interference phenomena is discussed in 
detail based on the X-ray dynamical diffraction 
theory. A general formula for the spacing of 
Borrmann-Lehmann fringes is derived. The computer 
simulation patterns agree well with the experimental 
topographs. 

I. Introduction 

In 1963, Borrmann & Lehmann discovered a new 
X-ray diffraction interference phenomenon which is 
produced by the interference between the rays direct 
from the point of incidence of X-rays and the rays 
via reflection at the lateral Bragg surface of a crystal. 
In the early studies of Borrmann-Lehmann (referred 
to here as BL) fringes, the diffraction corresponded 
to the high-absorption case with/.tt = 18 (Borrmann 
& Lehmann, 1963) and /zt=76 (Lehmann & 
Borrmann, 1967), /~ being the normal X-ray linear 
absorption coefficient and t the crystal thickness. In 
1978, Mai Zhenhong & Lang (personal communica- 
tion) investigated the interbranch interference effects 
in the moderate-absorption (/xt= 1-6) case. Lang, 
Kowalski, Makepeace & Moore (1986) did experi- 
ments in the low-absorption (~t  = 0.47) case with 
synchrotron radiation of wavelengths 1.5 and 1.0 ~.  
The experimental results in the moderate-absorption 
cases show that the fringe patterns are strongly depen- 
dent upon the crystal-absorption. The spacing of BL 
fringes in moderate- and low-absorption cases does 
not confirm those derived by Borrmann and Lang. In 

Fig. 1. Scheme of the principle of production of Borrmann- 
Lehmann interference fringes. 
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this paper, based on dynamical diffraction theory, we 
investigate the effect of absorption on the behaviour 
of X-ray wave fields in a crystal for BL interference 
phenomena in detail, and derive a general formula 
for the spacing of BL fringes which is valid for high, 
moderate and low absorption. Also, the computer 
simulation patterns agree with the experimental topo- 
graphs. 

II. The reflection and transmission of the X-ray wave 
field at the edge of a crystal 

In the BL experimental arrangement, a lateral surface 
of a crystal is located in the Borrmann fan (Fig. 1). 
When the Poynting vector s of a Bloch wave in the 
crystal impinges upon the lateral surface of the crys- 
tal, a significant fraction of its energy is reflected back 
into the crystal. We then have Laue-Bragg diffraction. 
Rays may reach the Laue exit surface to the fight of 
the corner B by two paths, one direct from the point 
of X-ray incidence ([3] in Fig. 1) and the other via 
reflection at the lateral Bragg surface ([ 1 ] + [2] in Fig. 
1). The optical path difference between these rays 
produces the BL interference fringes which can be 
observed in both the Ko and the K~ beams issuing 
from the crystal surface to the right of B. Similar to 
the theoretical treatment of the perfect-crystal case, 
the wave field inside the crystal is calculated here by 
plane-wave theory and then by spherical theory. 

1. Plane-wave theory 

Fig. 1 shows the ray paths involved in BL-fringe 
formation owing to the interference between waves 
following trajectory [1]+[2] and those following 
trajectory [3]. When the ray [1] is reflected at R on 
the lateral surface the boundary conditions of the 
wave field, allowing for the phase continuity of related 
fields at the surface, are given by 

Do(r)+ Dot(r) = Do,(r) ( la )  

Dg(r) + D~r(r) = O, ( lb) 

where Do(r) and D~(r) are the primary rays inside 
the crystal excited by the incident beam respectively, 
Dot(r) and Dgr(r) are the rays reflected by the internal 
lateral surface and Dot(r) is the transmission ray from 
the lateral surface. 
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Do(r) = Co exp { i[ (K. r~) + Ko. ( r -  r~) ]} 

Dg(r) = Cg exp {i[(K. r~)+ Kg. ( r - r~)]}  

Dofir) = Cor exp { i [ (K-  Ko). re 

+ ( K  0 - K o r ) .  rs  "{- K o r .  r]} 

Dgr(r) = Cg~ exp { i [ ( K - K g ) .  rg 

+ (Kg- Kg,). rs + Kgr. r]} 

Dot(r) = Cot exp { i [ (K-  Ko). r~ 

+ (Ko- K). rs + Ko,. r]}. 

Here K is the wave vector in vacuum, Ko, Kg, Kor 
and Kgr are the wave vectors corresponding to the 
rays Do, Dg, Dor and Dg,, respectively, r, re and rs 
are the position vectors of an arbitrary point inside 
the crystal, on the incident plane and on the lateral 
surface, respectively. 

After calculation, we obtain 

Dot(r) = Cor exp { i[ K y Y  + KzZ 

- ( KXo/2 sin 0)( 3,g/ 3,o-1) 

+ ( KXo/ 2 3,o) t 

-.]-,}~,(S2-{-~2)'/2-n2S]} (2a) 

Dgr(r ) = Cg~ exp { i[g. r+  Ky Y + KzZ  

+ ( KXo/ 2 3,o) t - ( KXo/ 2 sin O) 

x (3,g/3,o- 1) 

+,rh(S2 + ~2)l/:-,rhS]} (2b) 

Dot(r)= Cot exp { i [ K y Y +  K~Z 

- ( KXo/ 2 3,'o) ts + ( KXo/ 2 3,o) t 

- (  KXo/E sin 0)(3,g/3,o-1) 

± rh(S 2 + fie),~2_ 7/2S]}, (2c) 

where 

-- -4-( S 2 -~- ]~2)1/2 "2 k ~ g ]  k ' - ~ ]  
- 

1 [ - S ~ ( $ 2 + f l 2 )  '/2 3,0 3,g S ± ( S 2 + f l 2 )  '/2] 

3,g 

1~1-" 

r/2 = 

K . r =  
~= 
a =  

S =  

at - ats[ 3,o13,g + 3,g/3,~] 

x - a t  + ats[  ~/ol 3,~ - 3 ,~13 ,~]  

( ~ t - ~ s )  . ns 

K x X  + K y Y +  KzZ  

[ K C ( x ~ ) ' / 2 / s i n  20B](3,~/10) '/2 

½(sin 20B)/3,o 

- K x  + ( KXo/2 sin 20B)(1 - 3,~/ 3'0) 

3,~= cos (as • Ko) 3,g = cos (as. K+g)  

3,~ = cos (Ko. rib) 3'~ = COS (Kg. rib). 

r is the position vector of the point of observation 
and rs specifies a point on the lateral surface of the 
crystal, as is the inwardly directed normal to the 
lateral surface and nb is the outward normal to the 
exit surface. 

2. Spherical-wave theory 

From the theoretical treatment of Kato (1968) and 
Saka, Katagawa & Kato (1972), the crystal wave fields 
are expressed as follows: 

Transmitted wave: 

oo 

i 1 D~(r) dKx dKy. (3a) 
D° = 87r-----~ Kzz s 

-oo 

Diffracted wave: 
oo 

D~=8~--~ rz 7" 
--t:X) 

where D~(r) and D~(r) are the wave fields treated by 
plane-wave theory. 

Integrating equation (3), we obtain the wave fields 

Dot = ( i/  4)(2 7rKr) -'/2 exp i ( - 7 r / 4 +  Kz + p ) fl 

X(Xgr/Xor)'/2J,[~(XorXgr) 1/2] (4a) 

Dg r = ~(2 7rKr) -'/2 exp i ( - 7 r / 4 +  Kz + g . r +  p)/3 

X (,)(gl x~)l/2Jo[fl(XorXgr) 1/2] (4b) 

Dot = ( i~ 4)(2 ~Kr)- ' /2 (13 ,g l /  3,~)'/2 

x exp i ( - 7 r / 4 +  K z + p t ) f l  

3, ~113,o ) XorXo]} (4c) x s , { / 3 [ ( I  " " ,,,2 

where 

Pt = P - ( KXo/ 2 3,'~) t,, 

P = (KXo/2 Yo)[ t + ( Yo- yg/sin 20B)X], 

t is the distance from the entrance plane, X0r = PG, 
Xgr = PH, Xo = JP, Xg = PF (Fig. 2). 

It is obvious that the amplitudes of the wave fields 
expressed by equation (4) are very similar to those 
from a perfect crystal. Therefore the BL fringes could 
be considered to be an interference phenomenon of 
wave fields from sources at E and E '  (Fig. 2). 

3. Expression for  the intensity o f  the wave field 

From Fig. 2 it can be seen that the BL interference 
appears in the triangle RBD,  called the BL region; 
while the Pendell6sung interference in the quadri- 
lateral E R D C  is called the Pendell6sung region. 
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In the BL region, the wave fields are expressed by 
transmitted wave 

Do+ Do~ = (i/4)(2rrKr) -~/2 exp i ( - , r / 4  + Kz + P)fl 

x {-(x=/Xo) ' /2J,[ /3(XoX=) '/2] 

+(x=r/Xo,)'/2~,[/3(Xo,X=,)'/2]}; (5a) 

diffracted wave 

Dg + D=,=-~(27rKr)  -'/2 

× exp i ( - r r / 4 +  Kz + g .  r +  P)/3 (Xg/X~) ~/2 

x {YO[/3(XoX=)'/2]--.10[/3(XorX=r)'/2]}, 
(5b) 

where/3 = KC(XgX¢)U2/sin 20B. 
In the absorption case, the susceptibilities Xo, Xg, 

X~ and the parameters /3 and p are complex. For 
symmetric reflection and a centrosymmetric crystal, 
let 

pl  = / 3 ( X o X g )  1/2 

=/3 cos 0[(t  tan O)2-(rt-a)Z] w' 

p2 = /3( Xo,Xo=) '/2 

=/3 cos 0[(t tan O)2-(rl+a)Z] ~/2 

where a = AE in Fig. 2, 77 is the position of observa- 
tion on the exit surface. 

In the absorption case, p~ and P2 are complex. For 
BL experiments in the vicinity of the edge of the 
crystal, 

Ip,l>>l, Ip21>>l. 
The intensities of the wave fields can be expressed 
approximately as follows: 

Io = lot + lo2 + lo3 

= AC exp ( - / z t / cos  O){(Xg/Xo)lJt(pl)[ 2 

+(Xgr/Xo~) Jl(P2) 2-(X=X=r/XoXor) '/2 

X[J*I (P,)J,(P2)+ J,(P,)J*I (P2)]} (6a) 

frill 

T 

Fig. 2. Scheme of the experimental geometry of Borrmann- 
Lehmann interference. 

I= = I=, + 1=2 + I=3 

= AC exp ( - /x t / cos  0){lJo(p,)l 2+ IJo(p2)l 2 

--[ Jo~( Pl)Jo(P2) + Jo( Pl)Jo~(P2) ]}, (6b) 

where A = (327rr) -~ IX=X~[/sin 20, C is the polariza- 
tion factor and the symbol * means the complex 
conjugate. It is seen that the first two terms comprise 
the Pendellrsung term and the third term is the BL 
term. 

4. Behaviour of the interference fringes 

(1) Diffraction wave. When pl and 02 are complex, 
we have 

lJo(p) 2 = ( t r i p  )-l[cosh (2p ' )+cos  ( 2 p r - r r / 2 ) ]  (7) 

and 

Jo*( p,)Jo(p2) + Jo( p,)Jo* (p2) 
--1 r ='n" [plP2]-'/2[cosh (pil + p~) cos ( p , - p ~ )  

+cosh(p~-p~)cos(p~+p~- ' t r /2)] .  (8) 

(A) Pendellrsung term. From equation (7) one can 
see that the spatial distribution of wave energy has a 
periodic behaviour that is the well known Pendel- 
16sung phenomenon. In the low-absorption case 
( /~ t<  1), p i = 0 ,  cosh (2pi) = 1. Therefore the maxi- 
mum energy flow is in the margin of the Borrmann 
fan. This is the margin effect. In the high-absorption 
case (/zt>>l), cosh2p~>>l. Then only one of the 
waves can penetrate the crystal. This is the anomalous 
transmission. 

(B) BL term. From (8), one can see that the BL 
term consists of two parts. Therefore the BL fringes 
are more complicated than the Pendellrsung fringes. 
To simplify the following discussion we call the terms 
which contain cos ( p ~ -  p2) and those which contain 
cos (p~ + P2-  7r/2) in (8) 'negative' and 'positive', 
respectively. Then the fringe spacings of these two 
terms are expressed by 

At/± = (2A sin O/]x~lC)f_,.(rl) (9) 

where 

L( r l )  = I(-{[t  tan O l ( n - a ) ] ~ ' - l }  -'/:' 

wT[t tan 01('0+ a)32-1}-'/2)-' I. (10) 

The negative sign is associated with the 'positive' term 
and the positive sign with the 'negative' term, t is the 
thickness of the crystal, r/ is the positional variable 
on the exit surface of the crystal. 

It is easy to see that the spacings of these two terms 
are different. Their effect on the BL fringe spacing 
also depends on the intensities of each wave. So when 
studying the spacing of BL fringes the intensities of 
wave fields should be considered. Therefore the 
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absorption effect cannot be neglected. When (-r/+ a) 
,~½t tan 0, we have: 

i i___. P1+ P2 2flit sin OB 
i i 

/91 --p2--~0. 

For the high-absorption case, cosh (pl + P2) >~> 
cosh (pl - P2). Therefore the spacing of BL fringes is 
mainly dependent upon the term with negative sign 
in (9). Then 

f_(~7) = (t tan 0)/2a. (11) 

Substituting (11) into (9), one can obtain 

An_=(X/CIx~l)sin 0tan O(t/a). 

This is the formula given by Borrmann & Lehmann 
(1963). 

For the low-absorption case, cosh(pg+p2) = 
c o s h  ( Pl - P2) "" 1. Both 'negative' and 'positive' terms 
affect the spacing of BL fringes. So, in this case, the 
spacing of BL fringes is not equidistant, while they 
are equidistant in the high-absorption case. In the 
region of 7/.~ a, f_ ~ f+ .  The spacing of BL fringes is 
dominated by the 'negative' term and modulated by 
a modulation term. In the region of ~7 > a (in our 
experimental conditions, BD = t tan 0 - a > a), f_ > 
f+. The fringe spacing is dominated by f+. It is not 
constant and decreases with increase in ~/. 

(2) Transmitted wave. As a similar treatment to the 
above 

]],(p)l  2 -- (~rl pl)- ' [cosh (2p') + cos (2p r -  3 ~/2)]  

(12) 
and 

J1¢'¢( p l ) J l  ( p 2 )  --}- Jl(Pl)J~(fl2) 
=(2/~r)lp,p:-'[cosh (p~ + p~) cos (prl--p~,) 

+cosh (p~-p~)cos(p~+p~-37r/2)] .  (13) 

One can see that the effect of absorption in the 
transmitted wave is similar to that in the diffracted 
wave. The results mentioned in the section on the 
diffraction wave are also relevant. In the high-absorp- 
tion case, the spacing of BL fringes agrees with that 
given by Borrmann & Lehmann (1963). 

Comparing (6a) and (6b), one finds that the 
differences between the transmitted wave and the 
diffracted wave are: (1) the distribution of intensity 
of the diffracted wave depends on the Bessel function 
alone while those of the transmitted wave also 
depends on the coordinate factor, Xg/Xo, Xsr/Xor, 
as well as the Bessel function. Therefore, for the 
transmitted wave, the distribution of intensity 
decreases from the direction of the incident beam to 
that of the reflected beam; (2) the phase difference 
between the transmitted and diffracted waves is ~r. 
Therefore, for the Pendell&sung fringes, the intensities 
of transmitted and diffracted waves are complemen- 

tary. But for the BL fringes, these two waves have a 
phase difference of 7r only in the 'positive' term while 
they have the same phase in the 'negative' term. So 
in general it is not possible to give a phase difference 
between them. The conclusion given by Borrmann & 
Lehmann (1963) is valid only for the high-absorption 
case. 

5. Results of calculations 

Based on (6), the distributions of intensities of the 
wave fields both along the exit surface and in the 
Borrmann fan of specimens were calculated by com- 
puter for low, moderate and high absorptions. Figs. 
3(a) and (b) show the distributions of intensities of 
Kg and Ko waves along the exit surface of a diamond 
specimen with/zt  = 1-62 respectively. It is very clear 
that in the Pendelli~sung-fringe regions CD and BF 
(Fig. 3b), the fringes are regular. The intensity oscilla- 
tions in K s and Ko are complementary and the 'beat' 

i 

O: 

(a) 

F 

a O - j  

(b) 

Fig. 3. The distr ibution of  intensities along the exit surface of  a 
diamond specimen, t = 1 mm, /~t = 1.62, a = 0.24 mm, Cu Kal 
radiation, 220-type reflection. (a) K e beam, (b) Ko beam. 
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effect is obviously seen owing to the superimposition 
of the periodicities arising from the superimposition 
of patterns of the tr- and or-polarization states. In the 
BL-fringe region, the BL fringes are more compli- 
cated. The intensities of Kg and Ko are not com- 
plementary in the region close to the edge of the 
crystal (7/~ a). Although the spacing of fringes is 
approximately constant, the intensities are irregular. 
In the region far from the edge of the crystal (7/~ a), 
the BL fringes emerge irregularly. As the value of 77 
increases, the spacings of fringes decrease. 

Figs. 4(a) and (b) show the distributions of 
intensities of K s and Ko waves along the exit surface 
of a silicon specimen with ~t  = 18. One can see that 
in the high-absorption case the Pendell6sung fringes 
disappear and the spacing of the BL fringes is almost 
constant in the region close to the edge of the crystal. 
The positions of the maximum and the minimum of 
intensities of K s and Ko along the exit surface are 

. . . .  l . . . . . . . . . . . . . . . . . .  I 

(a) 

• 0 

superposed respectively and their intensities decrease 
as the value of 7? increases. 

Figs. 5(a) and (b) show the distribution of 
intensities in the Borrmann fan of. diamond with 
/~t = 1-6. It is obvious that the Pendell6sung fringes 
(ERDC) have a hyperbolic shape while the BL fringes 
(RBD) are divergent lines. In Fig. 5(b), one can see 
the 'beat' effect owing to the superimposition of the 
patterns of the or- and or-polarization states. 

III. Results of experiment and simulation 

To observe the BL interference fringes in the moder- 
ate-absorption case ( ~t  = 1.6), a rectangular diamond 
of 1 x 2 x 5 mm and Cu Ka~ radiation were used. Two 

(a) 

, , ~ - - - ~  

o 

2/. 23 22 21 20 19 18 1"7 16 15 1/. 13 12 11 10 9 8 7 6 5 4 ] 2 I 0 

)7 (10~.)  

(b) 

Fig. 4. The distribution of  intensities along the exit surface of  a 
silicon specimen, t = 12 mm, /z t  = 18, a = 0.2 mm, Cu Ka~ radi- 
tion, 220-type reflection. (a)  Kg beam, (b) Ko beam. 

(b) 

Fig. 5. The distribution of intensities in the Borrmann fan of 
diamond, /~t--l.6, CuKa~ radiation, 220-type reflection. 
(a) or-polarization state, (b) or+ ~-polarization states. 
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Laue-Bragg situations are considered [shown in Figs. 
6(a) and (b), respectively). Bragg diffracting planes 
(220) are normal to the major faces of the plate (the 
'symmetrical Laue case' for Laue-Laue diffraction). 
We recorded both the diffracted beam (direction Ks) 
and the transmitted beam (direction Ko) on photo- 
graphic plates placed in positions P~ and Po, respec- 
tively. For the recording of the transmitted beam, a 
screen S was inserted to avoid overexposure of the 

Ko 

( iio 

(a) (b) 

Fig. 6. Diffraction geometry for observing BL interference 
phenomena. (a) Negative setting, (b) positive setting. 

,lilll+,III 
l.alIIIU m~i,:".:.:~I 

'Ill!llilP ll " N 
Illl!lllll II:):,',.T.;cail 
.I ) : ~ i " / ' ~  

(a) + ~ 
1 2 (b) 

Fig. 7. Section topographs of diamond showing BL fringes, posi- 
tive setting, t = 1 mm,/.~t = 1-6, a = 0-24 mm, Cu Ka~ radiation, 
220-type reflection. (a) Kg-beam image, (b) Ko-beam image. 
The arrows numbered from left to right point to: (1) image of 
incident beam imprinted by brief removal of screen S; (2) edge 
of shadow produced by S. 

plate to the direct beam, briefly withdrawing it at the 
end of the exposure in order to imprint a record of 
the direct-beam position. An important parameter is 
the ratio of a, the distance of the point of incidence 
of X-rays from the edge of the crystal, to t, the crystal 
thickness. Obviously, Laue-Bragg diffraction condi- 
tions only come into play when (a / t )< tan  0. In our 
experiment, twelve values of a in the region from 6 
to 505 I~m were employed, i.e. values of a/ t  in the 
range 0.006 to 0.5. 

Figs. 7(a) and (b) are the Kg-beam and Ko-beam 
patterns, respectively, taken with a = 0.24 mm posi- 
tive setting. Borrmann-Lehmann fringes appear in 
the region BD while the Pendellrsung fringes are 
observed in the region CD and OF. In the Pendel- 
16sung fringes, the intensity oscillations in K s and Ko 
are of course complementary, and a regular 'beat' 
effect is obviously seen owing to the superimposition 
of patterns of the o-- and ¢r-polarization states. In BL 
fringes, the situation of the fringes is more compli- 
cated, as expected theoretically. Figs. 8(a) and (b) 
are the computer simulations of Figs. 7(a) and (b), 
respectively. One can see that the simulation patterns 
fit the experimental ones well. Figs. 9(a) and (b) are 
the section topographs showing BL fringes taken with 
a = 0.082 mm, positive setting. Comparison of Fig. 9 
with Fig. 7 shows that with decreasing values of a, 
the spacings of BL fringes increase, but not linearly. 
Figs. 10(a) and (b) are the computer simulations of 
Figs. 9(a) and (b), respectively. Also the patterns of 
simulations are in good agreement with experiment. 
Fig. l l ( a )  is the section topograph showing BL 
fringes taken with synchrotron radiation, ;t = 1.5/~, 
or-polarization mode (Lang et al., 1986). Fig. l l (b )  
is the computer simulation of (a). Since the syn- 
chrotron radiation has only one polarization mode, 
the beat of the Pendellrsung fringes disappears and 
the BL fringes are uniform and of equal spacing. 
In Fig. l l ( a ) ,  it is also found that the BL fringes 
are seriously distorted by lattice imperfections. 

[i) 
i Iliil!  

, t) 

(a) (b) 

Fig. 8. Computer simulation patterns of Fig. 7. (a) Ks-beam image, 
(b) Ko-beam image. 
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Authors  

Mai 
Mai 
Mai 
Mai 
Lang 
Lang 

Lang 
Lang 

BL 
BL 
BL 
BL 

Diffract ion 

Diamond 220 
Diamond 220 
Diamond 220 
Diamond 220 
Diamond 220 
Diamond 220 

Diamond 220 
Diamond 220 

Si 220 
Si 220 
Si 220 
Si 220 

Table 1. Comparison of spacings of Borrmann-Lehmann fringes 

Polar iza t ion  Beam t a d obs. d cal. d BL 
Rad ia t ion  m o d e  type  ( m m )  ( m m )  ~tt ( /~m) (/~m) (~tm) 

Cu K a  u tr+ Ir G 1 0.24 1"6 26"3 ' 28"2 42 
Cu K a  I or+ lr 0 1 0"24 1"6 26"3 28"2 42 
Cu K a  I or+ ¢r G 1 0"082 1.6 78 79 122 
Cu Kcq  or+ ¢r 0 1 0"082 1"6 78 79 122 
Cu K a  n or+ ¢r G 1 0"38 1"6 13"9 12 26-5 

Synchrotron tr G 1 0-44 1.6 11.9 11 22.9 
(1.5 A) 
Cu K a i  or+ ¢r G 1 0"21 1"6 29-1 33"5 48 

Synchrotron cr G 1 0.20 1.6 29.1 35 46 
(1.5 A) 
Mo Ka n or+ ¢r 0 12 0-2 18 66 68"5 65 
Mo Kag t r+  ~r G 12 0-2 18 66 68"5 65 
Mo K a  t ~,+ ¢r 0 12 0"5 18 33 29"1 30 
Mo Kan t r+  Ir G 12 0"5 18 33 29"1 30 

Im 

A comparison of the theoretical and experimental 
data is shown in Table 1. One can see that the spacings 
calculated, based on our theoretical results, agree 
with the experimental spacings for all cases; while 
the data calculated based on the Borrmann formula 
(Borrmann & Lehmann, 1963) are valid only in the 
high-absorption case. 

(a) ¢ ~ t b) 
1 2 

Fig. 9. Sect ion t 0 p o g r a p h s  o f  d i a m o n d  showing BL fringes,  posi. 
tive setting, t = 1 m m ,  p,t = 1.6, a = 0.082 m m ,  Cu K a l  rad ia t ion  
220-type reflection. ( a )  K g - b e a m  image,  (b)  K o - b e a m  image  
The  mean ing  o f  the n u m b e r e d  a r rows  is the s ame  as that  in Fig 
7(b).  

! : 

(a )  (b)  

Fig. 10. C o m p u t e r  s imula t ion  pa t te rns  o f  Fig. 9. ( a )  K s - b e a m  
image, (b) Ko-beam image. 

. .  

. .  

i ' 

t . ,  

l 

t "  

? 

( a )  (b) 

Fig. 11. ( a )  Sect ion t o p o g r a p h  o f  d i a m o n d  showing  BL fringes,  
synchro t ron  radia t ion ,  A = 1.5 A,  cr polar iza t ion ,  a =0"24  mm,  
t = 1 m m  (see Lang  e t a l . ,  1986, Fig. 7b).  (b)  C o m p u t e r  s imula t ion  
pa t te rns  o f  ( a ) .  
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IV. Concluding remarks 

In their pioneer experiments, Borrmann & Lehmann 
(1963) obtained agreement between observed and 
calculated fringe spacings within 25% in the high- 
absorption case and 70% in the low-absorption case. 
The reason for the deviation is that in their simple 
theory they considered only the effect of the phase 
relationship of waves upon the fringe spacing, but 
neglected the effect of the absorption and the 
intensities of the waves. In this paper, we have con- 
sidered all factors affecting the spacings of fringes. 
Therefore we have obtained good agreement, within 
14%, between observed and calculated fringe 
spacings in the high- and low-absorption cases. The 
computer simulation patterns also fit the experimental 
patterns very well. Through our theory the BL fringes 
are physically clearer. 

The authors thank Professor Shun Changde for 
helpful discussions, the British Council for financial 
support to MZ and Professor A. R. Lang FRS for 
guiding advice and topographic facilities at the 
University of Bristol. 
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Abstract 

A generalization and extension is given of the two- 
wavelength ratio technique for phase determination 
[e.g. Cascarano, Giacovazzo, Peerdeman & Kroon 
(1982). Acta Cryst. A38, 710-720 and references 
therein]. It is shown that the phase-determining for- 
mula of the ratio technique for acentric reflections 
merely depends on Bijvoet ratios and dispersion terms 
even if there are no restrictions on these dispersion 
terms. The system of equations which forms the basis 
for both the ratio technique and the Bijvoet difference 
method of Singh & Ramaseshan [Acta Cryst. (1968), 
B24, 35-40] (S&R) permits the derivation of a 
relationship between the scale factors of data col- 
lected at different wavelengths for acentric reflections. 
If this relationship is used as scaling scheme, the S&R 
method is algebraically equivalent to the ratio tech- 
nique. For centric reflections the two methods are 
equivalent provided that the same scaling is applied. 

Introduction 

The availability of intense tuneable synchrotron radi- 
ation has renewed interest in multi-wavelength 
methods for phase determination of protein structures 
by means of anomalous X-ray scattering. Two- 

wavelength methods employ either sums (differences) 
or ratios of two intensities, called respectively Bijvoet 
sums (differences) or Bijvoet ratios if the two 
intensities correspond to Friedel eciuivalents (or, in 
general, to reflections which are related by Laue sym- 
metry operations which do not belong to the crystal 
class). 

Singh & Ramaseshan (1968) (S&R) presented an 
algebraic two-wavelength method using Bijvoet sums 
and differences which allows calculation of the struc- 
ture-factor magnitudes of the anomalous scatterers 
and, after solving the heavy-atom structure, the struc- 
ture-factor phases. A slightly modified S&R method 
was used by Klop, Krabbendam & Kroon (1989) 
together with a direct-methods phasing technique 
which does not require the solution of the heavy-atom 
structure. 

Unangst, Miiller, Miiller & Kleinert (1967) pro- 
posed an alternative formalism for phase determina- 
tion when using anomalous-dispersion data which 
are based on Bijvoet ratios. Their results were de- 
rived in a limited form, using an approximation. 
Geometrical constructions of the multi-wavelength 
Bijvoet-ratio procedure for phase determination were 
given by Hosaya (1975). Bartunik (1978) presented 
an exact two-wavelength Bijvoet-ratio method for 
phase determination in which the real and imaginary 
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